Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sensitivity of the Mott-Schottky Analysis in Organic Solar Cells

Identifieur interne : 000415 ( Chine/Analysis ); précédent : 000414; suivant : 000416

Sensitivity of the Mott-Schottky Analysis in Organic Solar Cells

Auteurs : RBID : Pascal:13-0225697

Descripteurs français

English descriptors

Abstract

The application of Mott-Schottky analysis to capacitance-voltage measurements of polymer:fullerene solar cells is a frequently used method to determine doping densities and built-in voltages, which have important implications for understanding the device physics of these cells. Here we compare drift-diffusion simulations with experiments to explore the influence and the detection limit of doping in situations where device thickness and doping density are too low for the depletion approximation to be valid. The results of our simulations suggest that the typically measured values on the order of 5 X 1016 cm-3 for doping density in thin films of 100 nm or lower may not be reliably determined from capacitance measurements and could originate from a completely intrinsic active layer. In addition, we explain how the violation of the depletion approximation leads to a strong underestimation of the actual built-in voltage by the built-in voltage VMS determined by Mott-Schottky analysis.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0225697

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Sensitivity of the Mott-Schottky Analysis in Organic Solar Cells</title>
<author>
<name sortKey="Kirchartz, Thomas" uniqKey="Kirchartz T">Thomas Kirchartz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Imperial College London</s1>
<s2>South Kensington SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>South Kensington SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI GONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Imperial College London</s1>
<s2>South Kensington SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>South Kensington SW7 2AZ</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Key Laboratory of Luminescence and Optical Information, Ministry of Education and Institute of Optoelectronics Technology, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hawks, Steven A" uniqKey="Hawks S">Steven A. Hawks</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, University of California, Los Angeles</s1>
<s2>Los Angeles, California 90095</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, California 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Agostinelli, Tiziano" uniqKey="Agostinelli T">Tiziano Agostinelli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Imperial College London</s1>
<s2>South Kensington SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>South Kensington SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mackenzie, Roderick C I" uniqKey="Mackenzie R">Roderick C. I. Mackenzie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Imperial College London</s1>
<s2>South Kensington SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>South Kensington SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YANG YANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, University of California, Los Angeles</s1>
<s2>Los Angeles, California 90095</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, California 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Jenny" uniqKey="Nelson J">Jenny Nelson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Imperial College London</s1>
<s2>South Kensington SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>South Kensington SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0225697</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0225697 INIST</idno>
<idno type="RBID">Pascal:13-0225697</idno>
<idno type="wicri:Area/Main/Corpus">000B40</idno>
<idno type="wicri:Area/Main/Repository">001569</idno>
<idno type="wicri:Area/Chine/Extraction">000415</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Capacitance measurement</term>
<term>Doping</term>
<term>Drift mobility</term>
<term>Fullerenes</term>
<term>Indium addition</term>
<term>Numerical simulation</term>
<term>Polymer</term>
<term>Solar cell</term>
<term>Thickness</term>
<term>Thin film</term>
<term>Voltage capacity curve</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire</term>
<term>Caractéristique capacité tension</term>
<term>Polymère</term>
<term>Fullerènes</term>
<term>Dopage</term>
<term>Mobilité dérive</term>
<term>Simulation numérique</term>
<term>Addition indium</term>
<term>Epaisseur</term>
<term>Couche mince</term>
<term>Mesure capacité électrique</term>
<term>Couche active</term>
<term>8460J</term>
<term>8105T</term>
<term>8105U</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Polymère</term>
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The application of Mott-Schottky analysis to capacitance-voltage measurements of polymer:fullerene solar cells is a frequently used method to determine doping densities and built-in voltages, which have important implications for understanding the device physics of these cells. Here we compare drift-diffusion simulations with experiments to explore the influence and the detection limit of doping in situations where device thickness and doping density are too low for the depletion approximation to be valid. The results of our simulations suggest that the typically measured values on the order of 5
<sub>X</sub>
10
<sup>16</sup>
cm
<sup>-3</sup>
for doping density in thin films of 100 nm or lower may not be reliably determined from capacitance measurements and could originate from a completely intrinsic active layer. In addition, we explain how the violation of the depletion approximation leads to a strong underestimation of the actual built-in voltage by the built-in voltage V
<sub>MS</sub>
determined by Mott-Schottky analysis.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>116</s2>
</fA05>
<fA06>
<s2>14</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Sensitivity of the Mott-Schottky Analysis in Organic Solar Cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KIRCHARTZ (Thomas)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WEI GONG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HAWKS (Steven A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>AGOSTINELLI (Tiziano)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MACKENZIE (Roderick C. I.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YANG YANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>NELSON (Jenny)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Imperial College London</s1>
<s2>South Kensington SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering, University of California, Los Angeles</s1>
<s2>Los Angeles, California 90095</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Key Laboratory of Luminescence and Optical Information, Ministry of Education and Institute of Optoelectronics Technology, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>7672-7680</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000509674710090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>48 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0225697</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The application of Mott-Schottky analysis to capacitance-voltage measurements of polymer:fullerene solar cells is a frequently used method to determine doping densities and built-in voltages, which have important implications for understanding the device physics of these cells. Here we compare drift-diffusion simulations with experiments to explore the influence and the detection limit of doping in situations where device thickness and doping density are too low for the depletion approximation to be valid. The results of our simulations suggest that the typically measured values on the order of 5
<sub>X</sub>
10
<sup>16</sup>
cm
<sup>-3</sup>
for doping density in thin films of 100 nm or lower may not be reliably determined from capacitance measurements and could originate from a completely intrinsic active layer. In addition, we explain how the violation of the depletion approximation leads to a strong underestimation of the actual built-in voltage by the built-in voltage V
<sub>MS</sub>
determined by Mott-Schottky analysis.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05T</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Caractéristique capacité tension</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Voltage capacity curve</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Característica capacidad tensión</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Polymère</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Polymer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Polímero</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Fullerènes</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Fullerenes</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Mobilité dérive</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Drift mobility</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Movilidad deriva</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Addition indium</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Indium addition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Adición indio</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Mesure capacité électrique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Capacitance measurement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>8105U</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>210</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000415 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000415 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0225697
   |texte=   Sensitivity of the Mott-Schottky Analysis in Organic Solar Cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024